
Validating Industrial Requirements
with a Contract-Based Approach

Matthias Bernaerts, Bentley James Oakes, Ken Vanherpen, Bjorn
Aelvoet, Hans Vangheluwe, and Joachim Denil

Matthias.Bernaerts@student.uantwerpen.be,
{Bentley.Oakes, Ken.Vanherpen, Hans.Vangheluwe,

Joachim.Denil}@uantwerpen.be,
Bjorn.Aelvoet@dana.com

University of Antwerp

September 15, 2019



Table of Contents

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 2 / 20



Outline

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 3 / 20



Context

Automotive components are:

I Highly complicated cyber-physical systems

I Can be safety-critical

Example: Electronic Differential Lock
I Allow/prevent wheels from rotating at different speeds

I Different speed for cornering
I Same speed for traction assist

I Example Requirement: The system must close the EDL after

receiving a locking command from the driver.

dana.com/light-vehicles/products/driveline/axles/high-efficiency-advantek

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 4 / 20

dana.com/light-vehicles/products/driveline/axles/high-efficiency-advantek


ASET Project

Automated and Simulation-based Functional Safety Engineering
Methodology (ASET) Project

Goal: optimize design processes of functional safety components
in the context of ISO 26262

I Need to verify component correctness

I Lower time/cost if performed early on in design process

I ISO26262 standard mandates recording traceability throughout
development

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 5 / 20



Outline

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 6 / 20



Contract-based Approach

1. Architectural language for functional safety components

2. Targeted contract language for functional safety

3. Tooling to formalize requirements in contract language

4. Tooling to verify contracts on system

5. Integration of contract approach in design process

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 7 / 20



Architectural Language

I aSET project also includes definition of system architecture model
I Functional Safety Formal Model (FuSaFoMo)

I Supports the functional safety artefacts of ISO 26262, like elements,
items, etc.

I Similar to aspects of SysML, can define interfaces to components

I Contract language can (optionally) refer to these ports and
connections in contracts

I Have to enable parallel development of system architecture and
contracts

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 8 / 20



Outline

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 9 / 20



Contract Language

I Focused on providing a domain-specific language (DSL) for
functional safety

I Under development, so syntax and semantics not finalized

Intention:

I Include relevant functional safety concepts
I Elements from signal processing, probability

I Automatically map contracts to temporal logic for verification

I Provide easy-to-use editor for safety engineer

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 10 / 20



Statement Language

First component of contracts - Statement Language:

I Contains mathematical/logical operators on signals
I Sets, averages, min/max, derivatives

I Example: “Event driver lock := Port
driverCommands closingRequest == True”

I Example: “Event unsafe temp := Port EDL temperature >= 100”

Major challenge:

I What operators are most appropriate for functional safety?
I Mainly signal processing? - Pulses, rise, fall. . .

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 11 / 20



Scopes and Patterns

Second component of contracts - Scopes and Patterns:
I From Autili et al.
I Structured property specification patterns defining when the

statements hold or not
I Example: After closeRequest, once EDL CLOSED becomes satisfied,

it remains so for at least 10 ms

I Few constructs - Five scopes, 16 patterns
I Seems to have sufficient expressiveness

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang,
“Aligning qualitative, real-time, and probabilistic property specification patterns using a structured
English grammar”, IEEE Transactions on Software Engineering, vol. 41, no. 7, pp. 620-638, 2015.

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 12 / 20



Contract Example

I Contracts defined in editor created as XText plugin for Eclipse
I Offers autocomplete, warnings/errors

I Low barrier to usage for partners

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 13 / 20



Outline

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 14 / 20



Mapping to Signal Temporal Logic

I Autili et al. also provide a direct mapping to temporal logic

Example:

I ResponsePattern: if P has occurred, then in response S eventually
holds (optionally within some amount of time).

I ResponsePattern: �(P→ ♦[t1,t2]S)
I always(P implies eventually[between t1 and t2 time units](S))

I Temporal logic can become very complicated
I Response Pattern which is valid between two events Q and R:
�((Q∧�[0,t1]¬R∧♦[t1,∞)R)→(P→(¬RU[t1,t2](S∧¬R)))UR)

I Goal: shield functional safety engineer from this complexity
I Editor automatically produces STL formulas when contracts are

saved

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 15 / 20



Verifying Signal Temporal Logic

I Using the Breach toolbox for STL verification
I Within the Matlab framework

I Proves STL formulas against simulation traces
A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid systems,” in
International Conference on Computer Aided Verification. Springer, 2010, pp. 167–170.
Available: https://github.com/decyphir/breach

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 16 / 20



Verification Example

Example contract regarding the state of the EDL:

I Provides boolean
satisfaction, and
quantitative satisfaction
throughout trace

I Details satisfaction for
each sub-formula

I Manual verification for
now, automation to
follow

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 17 / 20



Outline

1 Overview

2 Contract-based Approach

3 Contract Language

4 Contract Verification

5 Outcome and Conclusion

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 18 / 20



Outcome

Outcome 1: Ambiguous and conflicting requirements detected

Informal text “within” suggests a ReponsePattern, but this is a
RecurrencePattern

Outcome 2: Uptake by DANA

“Safety functions” [...] need to be simple (as in non-complex) in
nature, and formalization helps in attaining the (process) require-
ments for the higher safety integrity levels. Dana is planning on
incorporating the contract-based requirements technology as part
of the current day-to-day practices for validating safety-critical
systems.”

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 19 / 20



Conclusion

ASET project is in progress:

I Improving design process for safety-critical automotive components

I Developing a domain-specific contract language (DSL) for functional
safety

I Providing tooling for editing contracts, mapping to temporal logic,
and contract verification

I Integrating contracts into design process (and day-to-day practices)

Future work:

I Enhance contracts with relevant operators

I Automate verification and bring results back to editor

I Examine static verification of contracts
I Employ OCRA tool for component consistency

Questions?

Bernaerts et al. Validating Industrial Requirements with a Contract-Based Approach 20 / 20


	Overview
	Contract-based Approach
	Contract Language
	Contract Verification
	Outcome and Conclusion

